Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Emerg Microbes Infect ; 11(1): 250-259, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1585240

ABSTRACT

Testing and vaccination have been major components of the strategy for combating the ongoing COVID-19 pandemic. In this study, we have developed a quantitative anti-SARS-CoV-2 spike (S1) IgG antibody assay using a fingerstick dried blood sample. We evaluated the feasibility of using this high-throughput and quantitative anti-SARS-CoV-2 spike (S1) IgG antibody testing assay in vaccinated individuals. Fingerstick blood samples were collected and analyzed from 137 volunteers before and after receiving the Moderna or Pfizer mRNA vaccine. Anti-SARS-CoV-2 S1 IgG antibody could not be detected within the first 7 days after receiving the first vaccine dose, however, the assay reliably detected antibodies from day 14 onwards. In addition, no anti-SARS-CoV-2 nucleocapsid (N) protein IgG antibody was detected in any of the vaccinated or healthy participants, indicating that the anti-SARS-CoV-2 S1 IgG assay is specific for the mRNA vaccine-induced antibodies. The S1 IgG levels detected in fingerstick samples correlated with the levels found in venous blood plasma samples and with the efficacy of venous blood plasma samples in the plaque reduction neutralization test (PRNT). The assay displayed a limit of quantification (LOQ) of 0.59 µg/mL and was found to be linear in the range of 0.51-1000 µg/mL. Finally, its clinical performance displayed a Positive Percent Agreement (PPA) of 100% (95% CI: 0.89-1.00) and a Negative Percent Agreement (NPA) of 100% (95% CI: 0.93-1.00). In summary, the assay described here represents a sensitive, precise, accurate, and simple method for the quantitative detection and monitoring of post-vaccination anti-SARS-CoV-2 spike IgG responses.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19 Vaccines/immunology , COVID-19/immunology , High-Throughput Screening Assays/methods , Immunoassay/methods , SARS-CoV-2/immunology , Specimen Handling/methods , Antibodies, Viral/blood , Female , Humans , Immunoglobulin G/blood , Male , Spike Glycoprotein, Coronavirus , Vaccination
2.
PLoS One ; 16(9): e0248444, 2021.
Article in English | MEDLINE | ID: covidwho-1394535

ABSTRACT

The pandemic of novel coronavirus disease COVID-19 is rapidly expanding across the world. A positive result of antibody tests suggests that the individual has potentially been exposed to SARS-CoV-2, thus allowing to identify asymptomatic infections and determine the seroprevalence in a given population. The aim of this study was to evaluate the performances of a newly developed high throughput immunoassay for anti-SARS-CoV-2 IgM antibody detection on the Luminex MAGPIX platform. Clinical agreement studies were performed in 42 COVID-19 patient serum samples and 162 negative donor serum/plasma samples. Positive percent agreement (PPA) was 42.86% (95% CI: 9.90% to 81.59%), 71.43% (95% CI: 29.04% to 96.33%), and 28.57% (95% CI: 13.22% to 48.67%) for samples collected on 0-7 days, 8-14 days, and 2-8 weeks from symptom onset, respectively. Negative Percent Agreement (NPA) was 97.53% (95% CI: 93.80% to 99.32%). There was no cross-reactivity with the SARS-CoV-2 IgG antibody. Hemoglobin (200 mg/dL), bilirubin (2 mg/dL), triglyceride (250 mg/dL) and EDTA (10 mM) showed no significant interfering effect on this assay. In conclusion, an anti-SARS-CoV-2 IgM antibody assay with high sensitivity and specificity has been developed. With the high throughput, this assay will speed up the anti-SARS-CoV-2 IgM testing.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , Immunoassay/methods , Immunoglobulin M/immunology , Microspheres , SARS-CoV-2/immunology , Antibodies, Viral/blood , High-Throughput Screening Assays/methods , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , ROC Curve , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL